CCS C Software and Maintenance Offers
FAQFAQ   FAQForum Help   FAQOfficial CCS Support   SearchSearch  RegisterRegister 

ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

CCS does not monitor this forum on a regular basis.

Please do not post bug reports on this forum. Send them to CCS Technical Support

SSD1306 driver for use with less RAM
Goto page Previous  1, 2, 3, 4, 5
 
Post new topic   Reply to topic    CCS Forum Index -> Code Library
View previous topic :: View next topic  
Author Message
paulie2907



Joined: 25 Jun 2020
Posts: 5

View user's profile Send private message

PostPosted: Mon Mar 20, 2023 8:05 am     Reply with quote

Hello,

Driver
https://www.buydisplay.com/download/ic/SSD1305.pdf

Datasheet (with initialization procedure)
https://www.buydisplay.com/download/manual/ER-OLED022-1_Series_Datasheet.pdf

Current display
https://www.buydisplay.com/green-2-2-inch-oled-128x32-spi-display-module-serial-i2c-ssd1305

Thanks for helping me.
Ttelmah



Joined: 11 Mar 2010
Posts: 19541

View user's profile Send private message

PostPosted: Tue Mar 21, 2023 1:55 am     Reply with quote

OK.
Key is that the 1305, is compatible with the 1309, not the 1306. The big
difference is the charge pump. It doesn't have this. If you send the charge
pump commands to a 1309, it flips part of the display.
This sounds like the problem you are seeing.
Try removing the S_CHARGEPUMP entry from the init_sequence. Take
the whole line out. The code will send one less byte for the init.
The rest of the commands look compatible. Not sure whether you will
need the SH1106 setting. It looks as if you will (it is a 132*64 driver, not
a 128*64 driver).
Varman



Joined: 16 Jun 2024
Posts: 2

View user's profile Send private message

Re: SSD1306 driver for use with less RAM
PostPosted: Sun Jun 16, 2024 3:08 pm     Reply with quote

Ttelmah wrote:
Updated October 2018. An optional alternative way of running for PCD chips.

Updated Nov2017 - I've changed the font and bar graph output to be 0-100
Second amendment Dec 2017 Now supports a new #define to operate the SH1106 display as well. Also slightly more efficient

This is an example of a slightly 'different' SSD1306/SH1106 driver, for people working with restricted RAM.

The problem is that these chips do not allow a read, when in serial mode.
Now if (for instance), you set a pixel, on a 'clear' screen, then this is
not a problem. However if you then go to set a second pixel, you need to test
if any other pixel in the same byte is already set. So you need to 'know'
what is on the screen. The solution with the standard driver, is to have a
RAM buffer carrying a 'copy' of the screen, and then you can test the byte
in this, and if another pixel is set, send the whole byte with both pixels
to the display. However if you are trying to drive the screen on a chip
with very limited RAM, you don't have the space for such a buffer....

This driver allows some operations on the display, using varying amounts of
RAM.

It is in two parts. The first is a 'text' driver for the screen, which
uses a 6*8 font which is designed to be clear even at the small sizes on
the 0.96" displays. It gives you 21*8 text on the screen, with the ability
to also use the font 'double size' to give 10*4 text. It includes
thirteen extra characters in the font, which allow a 'bar graph' to be drawn
using 9 characters, and giving 0-100 (actually 101). for a empty bar to a
full bar. Again the double size mode can be used, to give a bar nearly the
width of the screen.

Key thing 'for' these screens, is they work in a wide range of light
conditions and at low temperatures where LCD's give problems - and they
are cheap!...

The driver is for I2C mode.

Look at the comments in the driver and example, to see how it works:
ssd1306.h
Code:

/*
Now the big limitation.....
In serial modes (SPI/I2C), this chip provides no ability to read back it's RAM.
So we have a problem. If we want to write a line across the screen, and leave
another line that is already there 'undestroyed' where they cross, how can we
'know' the other line is there?. Basically the host chip needs to have a copy
of the display memory so it can hold a copy of any graphics and know what is
going on. Problem is that this is just not possible, on a PIC with limited RAM.
So this driver works by overwriting for all text writes....

But see further down for the 'exception' to this.
*/
//It is most efficiently used by preparing the whole line of text first
//and then sending this - it then uses a 'burst' transmission, to give very
//fast updates. It does offer a 'putc' though, but this is slower.
//It does not properly handle wrapping at the end of the line.
//The putc function adds support for \n, \r, and \f.
//Functions:
//    OLED_CLS(); //clears the screen
//    OLED_gotoxy(x, y); //goto column/row 0-20 for the column
//                             //0-7 for the row
//    OLED_text(*text,  number);
//                             //This sends 'number' bytes from the array
//                             //pointed to by 'text', to the display
//    OLED_putc(c);            //sends 'c' to the display. Beware though
//                             //if you go beyond the end of the line
//                             //- you'll get partial characters....
//    OLED_textbar(width);     //Displays a bargraph. With width=50
//                             //you get a 50:50 display of bar/void.
//Two global variables affect how things are displayed.
//    size=NORMAL;
//    size=LARGE;              //switches between showing 21*8 & 10*4
//    size=DOUBLE_HEIGHT //Gives 21*4 - great for the bargraph
//    set=TRUE;                //default. Pixels are 'set' when written, so
//                             //turn on.
//    set=FALSE;               //all write functions now invert.
//The CLS will now set the screen white. Text characters print in black

//Then the second part of the driver is a 'window' driver. With this you can
//define a small graphic 'window', and draw things into this. This can then be
//rapidly copied to the display. So you could (for instance), plot a tiny graph,
//end then draw this on the display.
//The window must be a multiple of 8 pixels high, and can only be placed
//at a 'text' location, so you can't put it (say) 12 pixels down the screen,
//but only 8, 16, 24 etc..
//The size of the window determines how much RAM is used. So a 64*16 window
//uses 128 bytes of RAM (64*16/8).
//Neat thing is though, that you can draw an image on the window, put this on
//the screen, and then draw a second image, and put this somewhere else,
//without using any more memory. At the moment, I have only implemented two
//functions to draw to this window.
//If you don't want the graphic ability, if you #define TEXT_ONLY, then only
//the text mode driver will be loaded.
//With the graphic driver being used, the following extra functions are
//available:
//   clear_window();          //clears all pixels 'black' (if set==TRUE), or white.
//   set_pixel(x, y);         //sets a pixel at x,y in the window.
//                            //x=0 to WINDOW_WIDTH-1 (left to right)
//                            //y=0 to WINDOW_HEIGHT-1 (top to bottom)
//   line(x1, y1, x2, y2);    //draws a line from x1,y1 to x2, y2
//   rect(x1, y1, x2, y2);    //draws a rectangle
//   circle(x, y, radius, fill); //draws a circle
//   //This draws a circle of radius 'radius' centred at x,y. If 'fill' is
//   //true this is filled....
//
//   draw_window(x, int8 y);  //This draws the window onto the screen at
//                            //x=0 to 128, y=0 to 7.
//What you do is simply draw the shape you want into the window, and then
//this can be drawn onto the screen.
//I have not included font drawing, since this takes a lot more space....
//'set' again controls whether a pen, or eraser is used. So (for example), if you
//wanted a 'thick' circle, you could either draw several using the pen,
//without 'fill' enabled, or could draw one with fill, then change set to
//false, and draw a smaller one, to give a thick ring.


#define COMMAND_ONLY 0b00000000 //next byte is a command only
#define DATA_ONLY 0b01000000 //next byte is data

//directly from the data sheet - commands - not all used
#define S_EXTERNALVCC            0x1
#define S_SWITCHCAPVCC           0x2
#define S_SETLOWCOLUMN           0x00
#define S_SETHIGHCOLUMN          0x10
#define S_MEMORYMODE             0x20
#define S_COLUMNADDR             0x21
#define S_PAGEADDR               0x22
#define S_SETSTARTLINE           0x40
#define S_ROWADDRESS             0xB0
#define S_SETCONTRAST            0x81
#define S_CHARGEPUMP             0x8D
#define S_SEGREMAP               0xA0
#define S_DISPLAYALLON_RESUME    0xA4
#define S_DISPLAYALLON           0xA5
#define S_NORMALDISPLAY          0xA6
#define S_INVERTDISPLAY          0xA7
#define S_SETMULTIPLEX           0xA8
#define S_DISPLAYOFF             0xAE
#define S_DISPLAYON              0xAF
#define S_COMSCANINC             0xC0
#define S_COMSCANDEC             0xC8
#define S_SETDISPLAYOFFSET       0xD3
#define S_SETCOMPINS             0xDA
#define S_SETVCOMDETECT          0xDB
#define S_SETDISPLAYCLOCKDIV     0xD5
#define S_SETPRECHARGE           0xD9
#define DIV_RATIO                0x80 //recommended ratio
#define MULTIPLEX                0x3F //and multiplex
#define INT_VCC                  0x14

//Font 6*8 - slightly clearer than most fonts this size.
ROM BYTE font[] =
{
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00,      // Code for char
        0x00, 0x00, 0xBE, 0x00, 0x00, 0x00,      // Code for char !
        0x00, 0x00, 0x03, 0x00, 0x03, 0x00,      // Code for char "
        0x50, 0xF8, 0x50, 0xF8, 0x50, 0x00,      // Code for char #
        0x48, 0x54, 0xFE, 0x54, 0x24, 0x00,      // Code for char $
        0x98, 0x58, 0x20, 0xD0, 0xC8, 0x00,      // Code for char %
        0x60, 0x9C, 0xAA, 0x44, 0x80, 0x00,      // Code for char &
        0x00, 0x00, 0x00, 0x03, 0x00, 0x00,      // Code for char '
        0x00, 0x38, 0x44, 0x82, 0x00, 0x00,      // Code for char (
        0x00, 0x82, 0x44, 0x38, 0x00, 0x00,      // Code for char )
        0x02, 0x06, 0x03, 0x06, 0x02, 0x00,      // Code for char *
        0x10, 0x10, 0x7C, 0x10, 0x10, 0x00,      // Code for char +
        0xA0, 0x60, 0x00, 0x00, 0x00, 0x00,      // Code for char ,
        0x10, 0x10, 0x10, 0x10, 0x10, 0x00,      // Code for char -
        0xC0, 0xC0, 0x00, 0x00, 0x00, 0x00,      // Code for char .
        0x80, 0x40, 0x20, 0x10, 0x08, 0x00,      // Code for char /
        0x7C, 0xA2, 0x92, 0x8A, 0x7C, 0x00,      // Code for char 0
        0x00, 0x84, 0xFE, 0x80, 0x00, 0x00,      // Code for char 1
        0xC4, 0xA2, 0x92, 0x92, 0x8C, 0x00,      // Code for char 2
        0x44, 0x82, 0x92, 0x92, 0x6C, 0x00,      // Code for char 3
        0x18, 0x14, 0x12, 0xFE, 0x10, 0x00,      // Code for char 4
        0x9E, 0x92, 0x92, 0x92, 0x62, 0x00,      // Code for char 5
        0x7C, 0x92, 0x92, 0x92, 0x64, 0x00,      // Code for char 6
        0x06, 0x02, 0xE2, 0x12, 0x0E, 0x00,      // Code for char 7
        0x6C, 0x92, 0x92, 0x92, 0x6C, 0x00,      // Code for char 8
        0x4C, 0x92, 0x92, 0x92, 0x7C, 0x00,      // Code for char 9
        0xCC, 0xCC, 0x00, 0x00, 0x00, 0x00,      // Code for char :
        0xAC, 0x6C, 0x00, 0x00, 0x00, 0x00,      // Code for char ;
        0x00, 0x10, 0x28, 0x44, 0x82, 0x00,      // Code for char <
        0x48, 0x48, 0x48, 0x48, 0x48, 0x00,      // Code for char =
        0x00, 0x82, 0x44, 0x28, 0x10, 0x00,      // Code for char >
        0x04, 0x02, 0xB2, 0x12, 0x0C, 0x00,      // Code for char ?
        0x7C, 0x82, 0xBA, 0xAA, 0xBC, 0x00,      // Code for char @
        0xF8, 0x14, 0x12, 0x14, 0xF8, 0x00,      // Code for char A
        0xFE, 0x92, 0x92, 0x92, 0x6C, 0x00,      // Code for char B
        0x7C, 0x82, 0x82, 0x82, 0x44, 0x00,      // Code for char C
        0xFE, 0x82, 0x82, 0x44, 0x38, 0x00,      // Code for char D
        0xFE, 0x92, 0x92, 0x82, 0x82, 0x00,      // Code for char E
        0xFE, 0x12, 0x12, 0x02, 0x02, 0x00,      // Code for char F
        0x7C, 0x82, 0x92, 0x92, 0xF4, 0x00,      // Code for char G
        0xFE, 0x10, 0x10, 0x10, 0xFE, 0x00,      // Code for char H
        0x00, 0x82, 0xFE, 0x82, 0x00, 0x00,      // Code for char I
        0x60, 0x80, 0x80, 0x80, 0x7E, 0x00,      // Code for char J
        0xFE, 0x10, 0x18, 0x24, 0xC2, 0x00,      // Code for char K
        0xFE, 0x80, 0x80, 0x80, 0x80, 0x00,      // Code for char L
        0xFE, 0x04, 0x38, 0x04, 0xFE, 0x00,      // Code for char M
        0xFE, 0x04, 0x08, 0x10, 0xFE, 0x00,      // Code for char N
        0x7C, 0x82, 0x82, 0x82, 0x7C, 0x00,      // Code for char O
        0xFE, 0x12, 0x12, 0x12, 0x0C, 0x00,      // Code for char P
        0x7C, 0x82, 0xA2, 0xC2, 0xFC, 0x00,      // Code for char Q
        0xFE, 0x12, 0x12, 0x12, 0xEC, 0x00,      // Code for char R
        0x4C, 0x92, 0x92, 0x92, 0x64, 0x00,      // Code for char S
        0x02, 0x02, 0xFE, 0x02, 0x02, 0x00,      // Code for char T
        0x7E, 0x80, 0x80, 0x80, 0x7E, 0x00,      // Code for char U
        0x3E, 0x40, 0x80, 0x40, 0x3E, 0x00,      // Code for char V
        0xFE, 0x80, 0x70, 0x80, 0xFE, 0x00,      // Code for char W
        0xC6, 0x28, 0x10, 0x28, 0xC6, 0x00,      // Code for char X
        0x06, 0x08, 0xF0, 0x08, 0x06, 0x00,      // Code for char Y
        0xC2, 0xA2, 0x92, 0x8A, 0x86, 0x00,      // Code for char Z
        0x00, 0xFE, 0x82, 0x82, 0x00, 0x00,      // Code for char [
        0x08, 0x10, 0x20, 0x40, 0x80, 0x00,      // Code for char BackSlash
        0x00, 0x82, 0x82, 0xFE, 0x00, 0x00,      // Code for char ]
        0x00, 0x08, 0x04, 0x02, 0x04, 0x08,      // Code for char ^
        0x80, 0x80, 0x80, 0x80, 0x80, 0x00,      // Code for char _
        0x00, 0x00, 0x02, 0x04, 0x00, 0x00,      // Code for char `
        0x40, 0xA8, 0xA8, 0xA8, 0xF0, 0x00,      // Code for char a
        0xFE, 0x88, 0x88, 0x88, 0x70, 0x00,      // Code for char b
        0x70, 0x88, 0x88, 0x88, 0x10, 0x00,      // Code for char c
        0x70, 0x88, 0x88, 0x88, 0xFE, 0x00,      // Code for char d
        0x70, 0xA8, 0xA8, 0xA8, 0x30, 0x00,      // Code for char e
        0x10, 0xFC, 0x12, 0x12, 0x04, 0x00,      // Code for char f
        0x90, 0xA8, 0xA8, 0xA8, 0x70, 0x00,      // Code for char g
        0xFE, 0x10, 0x10, 0x10, 0xE0, 0x00,      // Code for char h
        0x00, 0x90, 0xF4, 0x80, 0x00, 0x00,      // Code for char i
        0x40, 0x80, 0x80, 0x90, 0x74, 0x00,      // Code for char j
        0xFE, 0x20, 0x50, 0x88, 0x00, 0x00,      // Code for char k
        0x7E, 0x80, 0x80, 0x00, 0x00, 0x00,      // Code for char l
        0xF8, 0x08, 0x70, 0x08, 0xF0, 0x00,      // Code for char m
        0xF8, 0x08, 0x08, 0x08, 0xF0, 0x00,      // Code for char n
        0x70, 0x88, 0x88, 0x88, 0x70, 0x00,      // Code for char o
        0xF8, 0x28, 0x28, 0x28, 0x10, 0x00,      // Code for char p
        0x10, 0x28, 0x28, 0xF8, 0x80, 0x00,      // Code for char q
        0xF8, 0x08, 0x08, 0x08, 0x10, 0x00,      // Code for char r
        0x90, 0xA8, 0xA8, 0xA8, 0x48, 0x00,      // Code for char s
        0x08, 0x08, 0xFE, 0x88, 0x88, 0x00,      // Code for char t
        0x78, 0x80, 0x80, 0x80, 0xF8, 0x00,      // Code for char u
        0x38, 0x40, 0x80, 0x40, 0x38, 0x00,      // Code for char v
        0xF8, 0x80, 0x70, 0x80, 0xF8, 0x00,      // Code for char w
        0x88, 0x50, 0x20, 0x50, 0x88, 0x00,      // Code for char x
        0x18, 0xA0, 0xA0, 0xA0, 0x78, 0x00,      // Code for char y
        0x88, 0xC8, 0xA8, 0x98, 0x88, 0x00,      // Code for char z
        0x00, 0x10, 0x6C, 0x82, 0x00, 0x00,      // Code for char {
        0x00, 0x00, 0xFE, 0x00, 0x00, 0x00,      // Code for char |
        0x00, 0x82, 0x6C, 0x10, 0x00, 0x00,      // Code for char }
        0x00, 0x08, 0x04, 0x08, 0x10, 0x08,      // Code for char ~
        0x7C, 0x7C, 0x00, 0x00, 0x00, 0x00,      // Code for char 
//Characters 32 to 127       
//The next eleven characters are above 127, and give the shapes used for
//the bar graph capability - remove if not needed
        0x82, 0x82, 0x82, 0x82, 0x82, 0x82,      //top and bottom bars only 128
       
        0xFE, 0x82, 0x82, 0x82, 0x82, 0x82,      //Open for bar 129
        0xFE, 0xFE, 0x82, 0x82, 0x82, 0x82,      //second bar
        0xFE, 0xFE, 0xFE, 0x82, 0x82, 0x82,
        0xFE, 0xFE, 0xFE, 0xFE, 0x82, 0x82,
        0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0x82,             
        0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE,     
        //Full block for bar 134
       
        0x82, 0x82, 0x82, 0x82, 0xFE, 0xFE,      //final one cloing shape 135
        0xFE, 0x82, 0x82, 0x82, 0xFE, 0xFE,      //single left and double right       
        0xFE, 0xFE, 0x82, 0x82, 0xFE, 0xFE,
        0xFE, 0xFE, 0xFE, 0x82, 0xFE, 0xFE,
        0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE,       
        0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE       //New closing point for 0..100
        //final one closing shape 140
};
//Character 140

ROM BYTE init_sequence[] = S_DISPLAYOFF,
       S_SETDISPLAYCLOCKDIV,
       DIV_RATIO,                 
       S_SETMULTIPLEX,
       MULTIPLEX,
       S_SETDISPLAYOFFSET,
       0,                                   // no offset
       S_SETSTARTLINE,
       S_CHARGEPUMP,
       INT_VCC,                             // using internal VCC
       S_MEMORYMODE,                        //Since byte is vertical writing column by column
       0,                                   // default horizontal addressing
       (S_SEGREMAP | 0x1),                  // rotate screen 180
       S_COMSCANDEC,                       
       S_SETCOMPINS,                 
       0x12,
       S_SETCONTRAST,
       0xEF,                                //experiment.... 0xCf for 1306
       S_SETPRECHARGE,
       0xF1,
       S_SETVCOMDETECT,
       0x40,
       S_DISPLAYALLON_RESUME,
       S_NORMALDISPLAY,
       S_DISPLAYON;                         //switch on OLED   
//Initilalisation sequence
#define NORMAL 0
#define DOUBLE_HEIGHT 1
#define DOUBLE_WIDTH 2
#define LARGE DOUBLE_HEIGHT+DOUBLE_WIDTH
unsigned int8 O_current_col,O_current_row; //where text is currently 'working'
int8 size=NORMAL;

//Global flag for drawing mode
int1 set=TRUE; //allow funstions to set or reset - inverts drawing functions

#ifndef TEXT_ONLY
unsigned int8 window_buffer[WINDOW_WIDTH*WINDOW_HEIGHT/8];
//so with the example given, 128 bytes of RAM - much more practical on small chips!...
//This is the 'graphic window' buffer, so not needed for text only
#endif
#ifdef PSV
void OLED_commands(byte * commands, unsigned int8 number)
#else
void OLED_commands(rom byte* commands, unsigned int8 number)
#endif
//send a multiple command, or commands to the display - number says how many
//from a ROM buffer
{
   int8 ctr; //counter for the transmission
   i2c_start ();
   i2c_write (SSDADDR); //select the display
   i2c_write (COMMAND_ONLY); //we are sending a command     
   for (ctr=0;ctr<number;ctr++)
   {   
      I2c_write(commands[ctr]);
   }
   i2c_stop();
}

void OLED_data(unsigned int8 * data, unsigned int8 number)
//send 'number' bytes of data to display - from RAM
{
   unsigned int8 ctr; //updated to allow 128bytes on PIC24/30 etc..
   i2c_start ();
   i2c_write (SSDADDR); //select the display
   i2c_write (DATA_ONLY); //we are sending data(s)
   for (ctr=0;ctr<number;ctr++)
      i2c_write(data[ctr]); //send the byte(s)
   i2c_stop ();   
}

void OLED_address(unsigned int8 x, unsigned int8 y)
{
   //routine to move the memory pointers to x,y.
   //x is 0 to 127 (column), y (row) is 0 to 7 (page only)
#ifdef SH1106
   x+=2;
#endif
   i2c_start();
   i2c_write (SSDADDR); //select the display   
   i2c_write(COMMAND_ONLY); //we are sending command(s)
   i2c_write(S_ROWADDRESS | y); //select the display row
   i2c_write(S_SETLOWCOLUMN | (x & 0x0F)); //low col address
   i2c_write(S_SETHIGHCOLUMN | ((x>>4) & 0x0F)); //high col address
   i2c_stop();
} //also made more efficient


void OLED_gotoxy(unsigned int8 x, unsigned int8 y)
{
   //text x,y position bases on 8 lines/character and 6 columsn
   //0 to 20 columns, 0 to 7 rows
   if (x>(S_LCDWIDTH/6)-1) return;
   if (y>(S_LCDHEIGHT/8)-1) return;
   O_current_col=x; //efficient *6
   O_current_row=y;
   OLED_address((unsigned int16)x*4+(unsigned int16)x*2,y); //position display
}

void OLED_CLS(void)
{
   unsigned int8 row, col;

   //Just fill the memory with zeros
   for (row=0;row<S_LCDHEIGHT/8;row++)
   {
      OLED_address(0,row); //take the addresses back to 0,0 0,1 etc..
      i2c_start();
      i2c_write(SSDADDR); //select the display
      i2c_write(DATA_ONLY); //we are sending data(s)
      for (col=0;col<S_LCDWIDTH;col++)
      {
         if (set)
            i2c_write (0); //send 1024 zeros
         else
            i2c_write(255); //or the inverse
      }
      i2c_stop ();
   }
   OLED_gotoxy(0,0); //and text back to the top corner   
}

//Macros to efficiently double bits from a nibble
#define DOUBLE_BIT(N, S, D) if (bit_test(S,N)) { bit_set(D,(N*2)); bit_set(D,(N*2)+1); }
#define DOUBLE_B_HIGH(N, S, D) if (bit_test(S,N+4)) { bit_set(D,(N*2)); bit_set(D,(N*2)+1); }

void invert(unsigned int8 * buffer, unsigned int8 number) //routine to invert
{//data when'set==FALSE'
   do
   {
      *buffer^=0xFF;
      buffer++;
   } while(--number); //invert all the bits in the buffer
}

//Change here to allow multiple fonts
//This routine can be used by multiple output routines
#ifdef PSV
void FONT_line(byte * font_data, unsigned int8 count)
#else
void FONT_line(ROM byte * font_data, unsigned int8 count)
#endif
{
   //new function to transfer a line of data from the font table.
   //designed to optimise the handling of double size fonts
   //Sends one line of 'count' characters from the font to the display,
   //with doubling of width if necessary. Maximum 12 chars.
   unsigned int8 cols[24], ctr=0, width, inc_col, tchr, temp=0;
   if (size & DOUBLE_WIDTH)
   {
      width=count*2;
      inc_col=2;
   }
   else
   {
      width=count;
      inc_col=1;
   }
     

   for (ctr=0;ctr<width;ctr+=inc_col) //for columns
   {
      cols[ctr]=0;
      tchr=font_data[temp++]; //one byte of character from the font
      if (size & DOUBLE_HEIGHT)
      {
         DOUBLE_BIT(0,tchr,cols[ctr])
         DOUBLE_BIT(1,tchr,cols[ctr])
         DOUBLE_BIT(2,tchr,cols[ctr])
         DOUBLE_BIT(3,tchr,cols[ctr])               
      } //efficently double the bits from the low nibble
      else
         cols[ctr]=tchr;
      if (size & DOUBLE_WIDTH)
         cols[ctr+1]=cols[ctr]; //duplicate the byte
   }
   if (set==FALSE)
      invert(cols,width);
   OLED_data(cols,width);
   //Now if doubling in height repeat usiong the other nibble
   if (size & DOUBLE_HEIGHT)
   {
      temp=0; //back to the start of the font character
      OLED_address((unsigned int16)O_current_col*4+O_current_col*2,O_current_row+1);  //next row
      for (ctr=0;ctr<width;ctr+=inc_col) //through the columns again
      {
         cols[ctr]=0;
         tchr=font_data[temp++]; //one byte of character from the font
         DOUBLE_B_HIGH(0,tchr,cols[ctr])
         DOUBLE_B_HIGH(1,tchr,cols[ctr])
         DOUBLE_B_HIGH(2,tchr,cols[ctr])
         DOUBLE_B_HIGH(3,tchr,cols[ctr])
         //efficently double the bits from the high nibble
         if (size & DOUBLE_WIDTH)
            cols[ctr+1]=cols[ctr]; //duplicate the byte if double_width
      }
      if (set==FALSE)
         invert(cols,width);         
      //Now send the bytes for the second row
      OLED_data(cols,width);
   }
}

//Fastest text mode. No support for any control. Standard font only.
void OLED_text(unsigned int8 * text, unsigned int8 number)
{
   unsigned int8 inc_col;
   unsigned int16 temp;
   //size allows double height & double width
   //Here double height/width
   //for this I have to do two transfers each of double the amount of data
   //and reposition between each
   if (size & DOUBLE_WIDTH)
   {
      inc_col=2;
   }
   else
   {
      inc_col=1;
   }
     
   do {
      temp=(*text)-32;
      if (temp>108)
         temp=0; //block illegal characters         
      temp=((unsigned int16)temp*2)+((unsigned int16)temp*4); //efficient *6
      FONT_line(&font[temp],6); //six characters from the font
      //Now because I'll be in the wrong position (may be one line down)
      //have to re-locate
      O_current_col+=inc_col;
      OLED_address((unsigned int16)O_current_col*4+O_current_col*2,O_current_row);  //ready for next character
      text++; //and select the next character
   } while (--number); //and on to the next character
}

void OLED_putc(unsigned int8 chr)
{
   //this is a putc wrapper for the text function - note much slower
   //than sending the entire line directly
   if (chr=='\f')
   {
      OLED_CLS(); //handle Clear screen (form feed)
      return;
   }
   if (chr=='\r')
   {
      OLED_gotoxy(0,O_current_row); //carriage return
      return;
   }
   if (chr=='\n')
   {
      if (size==NORMAL)
         OLED_gotoxy(O_current_col,O_current_row+1);
      else
         OLED_gotoxy(O_current_col,O_current_row+2);
      return;
   }
   OLED_text(&chr,1);
}

void OLED_textbar(unsigned int8 width)
{
   //This draws a bar graph using text characters
   int8 ctr;
   unsigned int8 bar[9];
   //graph is now 0 to 100.
   //prints at current text location.
   width/=2;
   width+=2;  //ensure >0 - g1ves 2 to 52
   if (width>52)
      width=52;
   for (ctr=0;ctr<8;ctr++)
   {
      if (width>=6)
      {
         bar[ctr]=134; //full bar
         width-=6;
      }
      else
      {       
         bar[ctr]=128+width; //partial bars
         width=0;
      }
   }
   //now handle the right hand end of the bar
   bar[8]=135+width;
   OLED_text(bar,9);
}

//Now comes the 'exception' part to the driver
//Basic line & circle code writing to a small _window_ that can then
//be burst transmitted to the LED. Neat thing is that the same window
//can be used multiple times. So (for instance) you could write text on the
//left of the display, then have a 64*32 window. Draw something into this
//and display it at 64, 0 (text row) on the display, then draw something
//different (using the same window), and put this at 64, 4. The location
//the window is drawn has to be a byte boundary (so 0 to 7, for 0 to 63
//on the display.
//The sequence would be clear_window, line, circle etc.. Then draw_window(x,y)
//If you don't want to use the smace for this, then #define TEXT_ONLY at the start
//of the code

#ifndef TEXT_ONLY
void clear_window(void)
{
   memset(window_buffer,(set)?0:255,WINDOW_WIDTH*WINDOW_HEIGHT/8); //clear the buffer
}

//Basic pixel routine
#inline
void set_pixel(unsigned int8 x, unsigned int8 y)
{
   unsigned int16 locn; //This can be int8, if buffer is restricted to max 256 bytes
   //potentially slightly faster. However 1616 is 'generic'.
   if (x>=WINDOW_WIDTH) return;
   if (y>=WINDOW_HEIGHT) return; //Limit check - ensures I do not try to write
   //outside buffer boundaries
   locn=((y/8)*WINDOW_WIDTH)+x; //location in buffer
   //handle setting or resetting the pixel according to flag 'set'
   if (set)
      bit_set(window_buffer[locn],(y & 7)); //set the bit (to 1)
   else
      bit_clear(window_buffer[locn],(y & 7)); //set the bit (to 0)
}

//efficient line routine
void line(unsigned int8 x1, unsigned int8 y1, unsigned int8 x2, unsigned int8 y2)
{
   unsigned int16 i;
   int1 _plot;
   signed int16 _dx,_dy;
   unsigned int16 _ix,_iy,_inc,_plotx,_ploty,_x,_y;   
   //line from X1,Y1 to X2,Y2
   //first the differences between the coordinate pairs
   _dx=(signed int16) x2-x1;
   _dy=(signed int16) y2-y1;
   // ix & iy are the absolute increments required
   _ix=(_dx<0)?(-_dx):_dx;
   _iy=(_dy<0)?(-_dy):_dy;
   // we must step the longest length (x or y)
   _inc=(_ix>_iy)?_ix:_iy;   
   // make dx and dy the step required.
   if (_dx>0) _dx=1;   else if (_dx<0) _dx=-1;
   if (_dy>0) _dy=1;   else if (_dy<0) _dy=-1;
   // actual plotting points
   _plotx=x1;
   _ploty=y1;   
   // start at 0
   _x=0;
   _y=0;
   // set endpoint
   set_pixel(_plotx,_ploty);   
   /* we implement Bressenhams algorithm for a line using integer steps
   and only plotting the point when we get to a new co-ord pair */
   for (i=0;i<=_inc;++i)
   {
      _x += _ix;
      _y += _iy;
      // do not plot yet
      _plot=FALSE;
      //if we are at a new pair - set the plot flag and increment
      //the phsical plotting point
      if (_x > _inc)
      {
         _plot = TRUE;
         _x -= _inc;
         _plotx += _dx;
      }
      if (_y > _inc)
      {
         _plot = TRUE;
         _y -= _inc;
         _ploty += _dy;
      }
      // now plot the point
      if (_plot)
      {
         set_pixel(_plotx,_ploty); //this automatically handles set/reset
      }
   }   
}

void rect(unsigned int8 x1, unsigned int8 y1, unsigned int8 x2, unsigned int8 y2)
{
   //outline a rectangle
   line(x1, y1, x2, y1);      //Just draw four sides
   line(x1, y2, x2, y2);
   line(x1, y1, x1, y2);
   line(x2, y1, x2, y2);   
}

void circle(unsigned int8 x, unsigned int8 y, unsigned int8 radius, int1 fill)
{
   signed int8  a, b, P;
   a = 0;
   b = radius;
   P = 1 - radius;
   do
   {
      if(fill)
      {
         line(x-a, y+b, x+a, y+b);
         line(x-a, y-b, x+a, y-b);
         line(x-b, y+a, x+b, y+a);
         line(x-b, y-a, x+b, y-a); //inefficient but easy to code....
      }
      else
      {
         set_pixel(a+x, b+y);
         set_pixel(b+x, a+y);
         set_pixel(x-a, b+y);
         set_pixel(x-b, a+y);
         set_pixel(b+x, y-a);
         set_pixel(a+x, y-b);
         set_pixel(x-a, y-b);
         set_pixel(x-b, y-a);  //othewise draw the octant points
      }
      if(P < 0)
         P += 3 + 2 * a++;
      else
         P += 5 + 2 * (a++ - b--);
    } while(a <= b);
}

void draw_window(unsigned int8 x, unsigned int8 y)
{
   unsigned int8 yctr;
   unsigned int16 transfer=WINDOW_WIDTH;
   //routine to copy the window to the display.
   //x is in pixels, y in bytes (0 to 8). Uses burst transmission for each line
   if ((x+transfer)>=S_LCDWIDTH)
   {
      //here the window would go off the edge of the screen...
      transfer=(S_LCDWIDTH-1)-x;
   }     
   for (yctr=0;yctr<(WINDOW_HEIGHT/8);yctr++)
   {
      if (y+yctr>7) return; //off the end of RAM
      OLED_address(x,y+yctr); //position to the byte at the start of the line
      //transfer the line
      OLED_data(window_buffer+((unsigned int16)yctr*WINDOW_WIDTH),transfer);
      //again int16 only needed here if buffer>256 bytes
   }
}
#endif               


Now an example program using the driver in 'text mode' only:

mainssdtext.c
Code:

#include <18F13K22.h>
#fuses INTRC_IO, PLLEN, NOXINST, NOMCLR, NOLVP, STVREN, PCLKEN, NOFCMEN
#fuses NOIESO, NOPUT, BORV22, NODEBUG, NOPROTECT, NOWDT, WDT512
#fuses HFOFST, NOCPD, NOCPB, NOWRTD, NOWRTC, NOWRTB
#USE DELAY(INTERNAL=32MHz)

#USE I2C(I2C1, MASTER, FAST=400000, FORCE_HW)

//display dimensions - the physical LCD
#define S_LCDWIDTH               128
#define S_LCDHEIGHT              64
//If you want to use the SH1106, add this #define
//#define SH1106

#define TEXT_ONLY //If this is defined, gives a smaller text driver only

#define SSDADDR 0x78 //address for the chip - usually 0x7C or 0x78.

#include <string.h>
#include "ssd1306.h" //The OLED driver

void main()
{
   int8 ctr;
   char text[9]; //temporary text buffer

   delay_ms(250);                //OLED takes time to wake

   //now try to initialise OLED
   OLED_commands(init_sequence,sizeof(init_sequence)); //initialise the OLED
   
   //Now try some text
   set=TRUE;
   size=NORMAL;
   OLED_CLS(); //clear the physical screen
   OLED_gotoxy(0,0);
   strcpy(text,"Hello");
   OLED_text(text,strlen(text)); //This is the fastest way to write text
   delay_ms(2000);  //pause for two seconds
   
   OLED_gotoxy(0,4);
   size=LARGE;
   OLED_text(text,strlen(text)); //try some large text
   delay_ms(2000);

   //Now the printf mode
   size=LARGE;
   //now testing putc
   printf(OLED_putc,"\f12345\n\r67890\n\r");
   //Note how the line feed moves down by the large line when in
   //large mode
   delay_ms(2000);
   //Now printf in normal mode to the same screen 
   size=NORMAL;
   printf(OLED_putc,"ABCDEFGHI");

   delay_ms(2000); //delay again so you can see what it has done   
   //Now mixed size with a bar graph
   size=LARGE;
   printf(OLED_putc,"\fV=");

   for (ctr=0;ctr<101;ctr++)
   {
       size=NORMAL;
       OLED_gotoxy(4,1);
       printf(OLED_putc,"%3d  ",ctr);
       OLED_gotoxy(1,3);
       size=LARGE;
       OLED_textbar(ctr);
       delay_ms(250); //So you can see what is displayed!...
   }
   while(TRUE)
       ; //and stop
}


On the chip used here, this uses 37% ROM (about 3K), and 23% RAM (58 bytes).

Now a larger demo, using the graphics mode
Code:

//same processor header
//display dimensions - the physical LCD
#define S_LCDWIDTH               128
#define S_LCDHEIGHT              64

//#define TEXT_ONLY //REM this out

//Size of graphics 'window' see the graphics section for explanation
#define WINDOW_WIDTH 64
#define WINDOW_HEIGHT 16 //sizes of the graphic window in pixels
//height must be a multiple of 8. //these must now be defined

#define SSDADDR 0x78 //address for the chip - usually 0x7C or 0x78.

#include <string.h>
#include "ssd1306.h" //The OLED driver

void main()
{
   int8 ctr;
   char text[9]; //temporary text buffer
   //Remember if you want to use this for longer text, you'll need to
   //expand the buffer....

   delay_ms(250);                //OLED takes time to wake
   //now try to initialise OLED
   OLED_commands(init_sequence,sizeof(init_sequence)); //initialise the OLED
   
   //First try some text
   OLED_CLS(); //clear the physical screen
   set=TRUE;
   clear_window(); //clear the window buffer
   OLED_gotoxy(0,0);
   strcpy(text,"Hello");
   size=NORMAL;
   OLED_text(text,strlen(text));
   delay_ms(1000);
   
   //now some graphics
   line(0,0,64,16); //draw line in window
   line(10,10,61,0);//and a second
   //now write the window to the screen
   draw_window(64,0); //at 64 pixels across and top of screen

   delay_ms(1000);
   set=FALSE; //inverted drawing
   clear_window(); //clear the window to fully set!
   line(0,0,60,15);
   line(20,10,40,10);
   circle(32,8,8,1); //just touch the edge of the window
   draw_window(64,4); //put this window half way down screen

   delay_ms(1000);
   while (TRUE)
      ; //and stop
}


This is significantly larger (uses 192 bytes of RAM - this is the 128 byte
graphic 'window'), and over 5KB ROM. However still fits merrily in the
small chip. If you don't need things like the circle function, removing
these will reduce the ROM size a little.

Hopefully of use to somebody!... Smile

As a final comment, somebody posted asking for the minimum code to set a pixel on such a display. The following 'main' does this:

Code:

void main()
{
   int8 temp=1;
   delay_ms(250);                //OLED takes time to wake
   //now try to initialise OLED
   OLED_commands(init_sequence,sizeof(init_sequence)); //initialise the OLED
   
   OLED_CLS(); //clear the physical screen
   //Now just write a single byte to the start of the RAM

   OLED_data(&temp, 1);
   while (TRUE)
      ;
}


Now one final thing. Remember this chip is a 3.3v device. Using 3.3v I2c, you need small pull-ups to run this fast (I used 1.2KR).

You can also use size=DOUBLE_HEIGHT; which is very nice for the bargraph.

But I hear you say, it says it can use 5v Vcc. Yes it can, but the core _chip_ is 3.3v. It has it's own regulator on board for the logic, and the logic can run at 3.3v max. Beware not to overdrive it if running off a 5v device....

Have had it going successfully off a 5v device, by setting this to use SMBUS levels (many PIC's support this), and having the pull-ups to 3.3v. Or if you pull-up to 3.3v, and use _software_ I2C, on a port that supports TTL levels it also works OK.

I've updated this to allow some expansions to the font if required. Have changed the master code involved here, and posted some example expansions below. 5th Jan 2018.

Separate update October 2018.

If using PCD, using ROM *, is quite inefficient because of the maths involved in 3 bytes/word, and then the gap. On some chips this also seems to cause issues.
There is an alternative:

Code:

#include <your_processor_file>
#device PSV=16
//Then the rest of your processor setup

#define PSV
//Then include the SSD driver fonts etc.

//Then your code.


I've modified the driver, so if it sees 'PSV' defined, it changes the pointers from ROM pointers to normal RAM pointers. The PSV option enables a special mode, where the DsPIC's map 32K or their ROM, into the RAM address space, allowing normal RAM pointers to access this.
Has a slight cost, in that only two bytes get packed per instruction word when this is done. However does bring improvements to overall code efficiency.



This code is working well for 1.3 inch ( Driver - SSD1306)oled display with pic 16F877a, we need SSD1309 driver code and sample code for 2.4 inch oled display please help us
thank you
Varman



Joined: 16 Jun 2024
Posts: 2

View user's profile Send private message

PostPosted: Sun Jun 16, 2024 11:53 pm     Reply with quote

-Terppa- wrote:
Thank you very much for this driver Mr Ttelmah!
I have SSD1309 module which is modified on I2C- mode and it works great.


Hello Terppa
I am using SSD1306 driver for 1.3 inch trivar working fine but same driver and main code is not working in 2.4 inch display (SSD1309 -2.4 inch) can you help me
Ttelmah



Joined: 11 Mar 2010
Posts: 19541

View user's profile Send private message

PostPosted: Sat Jul 27, 2024 12:58 pm     Reply with quote

I'd suggest you have something wrong with how the latter is connected.
Obvious thoughts:
Is it jumpered correctly for I2C mode?.
Double check the connections themselves. Does one chip have level
translators on the board and the other not?.
What voltage is the PIC?.
Display posts from previous:   
Post new topic   Reply to topic    CCS Forum Index -> Code Library All times are GMT - 6 Hours
Goto page Previous  1, 2, 3, 4, 5
Page 5 of 5

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group